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ON CONVECTION IN A FLUID FILLING THE CAVITY OF A MOVING SOLID BODY* 

A. G. ZARUBIN and NGO ZUI RAN 

The problem of simultaneous motion about a fixed point 0 of a solid body and un- 
evenly heated viscous incompressible fluid completely filling a finite cavity ofthe 
body is considered in linear formulation. The center of mass of the system body 
plus fluid in the state of mechanical equilibrium is assumed to coincide with point 

0. The theorem on solvability of the Cauchy problem for small unsteady equili- 
brium perturbations is proved, and normal perturbations and the spectrum of the 
problem arising in the analysis of such perturbations are investigated. Itis shown 
that the whole spectrum consists of normal eigenvalues and lies in some half-band 
containing the real axis. It is shown that the respective system of root vectors is 
complete. Properties of the spectrum and the dependence on Rayleigh numbers are 
investigated.Rayleigh numbers for which the real parts of eigenvalues arepositive,i.e. 
when the generated oscillating normal perturbations are damped in time, are evaluat- 
ed in the case of the fluid being heated from below and above. 

1. Statement of the problem. Let a solid body with a cavity completely filled with 
nonuniformly heated viscous incompressible fluid move about a fixed point 0. The system 
body plus fluid is heated up so as to obtain mechanical equilibrium and bring the center of 
mass to the fixed point 0. 

We introduce the fixed orthogonal coordinate system Oy,y,y, (with the pa-axis directed 
upward) and a moving coordinate system Ox,+.r, rigidly attached to the body. 

In the coordinate system OZ,X+~ the equations of heat convection that define fluid mo- 
tion in the Boussinesq approximation are of the form 

u'-t-(u,F)u+oX(wXr)+eXr+2wxu= 
- po-'gp + vAu $ g&J', T' -+- (u, VT)=xAT, div u = 0, (x ES Q) 

(1.1) 

where u is the fluid relative velocity vector , o and e are the angular velocity and accelera- 
tion of the body, T is the temperature read from its mean constant value T,, p represents 
pressure deviation from the hydrostatic pressure p, which corresponds to the constant temp- 
erature T,, P = PO (1 - fiT) is the fluid density, v, fi, x are the coefficients of kinematic 
viscosity, thermal expansion, and thermal conductivity, respectively, k, is the unit vector 
of axis Oy,, r is the radius vector relative to point 0, and 8 is the bounded region filled 
with fluid. 

Let US clarify the conditions under which mechanical equilibrium is possible, i.e. the 
body with fluid is stationary. ,We set in Eqs. (1.1) the relative and angular velocitiesequal 
zero and shall seek the steady temperature and pressure distribution in the state of mechan- 
ical equilibrium. Denoting by To and PO the equilibrium distribution of temperature and 
pressure distribution, from (1.1) we then obtain 

- p6'g~o + gb k,T = 0, CT, = 0 

AS shown in /l/, temperature To changes linearly with height 

To = - a~, + b 

where a and b are constants. 
We linearize system (1.1) about the equilibrium position 

and obtain 

u. = 0, 00 = 0, To = - ay, + b, - ~~-‘vp~ + gfSk,T, = 0 

(1.2) 

u' + P (e X r) = --p+Au+RTk,, divu=U, T'TP-lAT + P-'(k,,.u), p= +-, R_ &; (1.3) 

which is in dimensionless form, with P denoting the Prandtl number, R the Rayleigh number, 
and L representing a characteristic linear dimension of region 0. 
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The thermal conductivity of the vessel wall is considered to be considerably higher than 
that of the fluid, it is therefore possible to assume an unchanging equilibrium distribution 
of temperature with its perturbation vanishing along the cavity wall. At the cavity wall the 
following conditions 

u=O, T=O on S :1.3) 

are then satisfied. 
We denote by MO and Ml the mass of the body and fluid, respectively, and by rO, rl the 

radius vectors of their centers of inertia in the unperturbed state relative to point o. 
With an accuracy to terms of second order of smallness we have 

Jf0ro+-Wlrl=M0r0+pO Cr(l--To--_BT)dR =M2r2-poS frTdS2=--pOJ (1.5) 
h ii 

where ikf~ = :VO f :)I, is the mass of the complete system and rz is the radius vector of the 
system body plus fluid in the unperturbed state, which by definition is zero. 

In the case considered here the syretem body plus fluid is subjected only to the gravity 
force moment which is induced by the displacement of the center of inertia owing to the non- 
uniform heating of the fluid in the perturbed motion. Then, by analogy with /2,3/ and with 
allowance for (1.5), the linearized equation of motion of the body with heated fluid written 
in dimensionless form is 

Je+PG-$ rx udnIRP_'G(ks x ~rTdQ)=O. G-s (1.6) 

where G is a dimensionless quantity, p1 is the mean density of the body plus fluid, and J 
is the dimensionless moment of inertia in the mechanical equilibrium state. 

Let us investigate the problem of determination of the motion of the body with heated 
fluid (l-3), (1.4), and (1.6) with the initial conditions 

u(I-o=uo, TI,,,=T3, o((-=oo (1.7) 

2. The theorem of existence. We denote by L2.0 (9) the closure in the L,-nom of the 
setofall smooth solenoidal vector functions v that satisfy on S the condition v,=O. It 
wasshownin /4/ that the orthogonal complement .C2,O($J) in L, is the closure in the .&-norm 
ofgtadientsof all Smooth functions in CZ. 

We introduce the space W&(62) which is obtained as the supplement of the set of infinit- 
elydffferentiable finite in R Solenoidal vectors in the metric that corresponds to the'scalar 
product 

(u,v)-1 VuVvdn 

We denote by H,(R) the Hilbert space consisting of all functions summable in quadrature 
over region Q, and by H,'(Q) the Sobolev space with the norm 

II T II* - s (gndT[‘dRf IITj’dS 
S 

Let H&(p) be a subspace of H,'(Q) of functions that vanish on S. 
Let IJ be the orthogonal projector from L*(Q) into L,,(O). It wds shown in /5,6/ that 

the operator -llA in W:,,(Q) can be extended to the self-conjugate positivedefinite operat- 
or _4 , and in /l/ that the operator A can be extended according to Friedrichs to the self- 
conjugate positive definite operator G. 

Let us transform the system of Eqs. (1.3), (1.6). For this we determine using (1.6) the 
angular acceleration e which we substitute into the first equation of System (1.3). Thenact 

on the obtained equation by the operator n. This yields 

(I + B) u’ = - Au -I- R (S, + B,) T, T’= - P-‘GT f P-‘&u, Bv I GlIjrxJ-‘irxvdQ) (2.1) 

SIT = Ilk,T, B,v - - GII (1. :-. J-' (k3 \~ [ rTdQ)), S,u = (k,, v) 
h 

It is convenient to consider system (2.1) as a single ordinary differential equation in 
the Hilbert space L2,0(R) H*(Q), namely the equation 

Qn' (t) i- Mn (1) + .Vll (I) = 0 (2.2) 

where operators Q, M, N are defined by matrices 
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R < 4h,i,, (A) Xmtn (c’) (2 + GJoJ~~-~)-*~ JO = J T*dQ 
P 

(3.9) 

where Jo is the dimensionless polar moment of inertia of the fluid relative to point 0 and 

J is the smallest component of the moment of inertia 
prEblem (3.1) lies in the region 

J, then the complete spectrum of 

Re h > 0, 1 Im h I Q II N U A,I,, (0) 

Proof. We transform system (3.1) to the form 

- h (I $ B) u i- Au = R (S, + B,) T, - )cPRT -+ RCT = R&u 

If h is the eigenvalue of system (3.1) to which corresponds the eigenfunction n =cel(u, 

T), then the equalities 

- h 1 (I + B)‘~*u 11% + I/ A’ilu II* = R i(S,, T, u) + (BIT, U)l, - hPR II T II* + R /I C’, ZT I(* = R (S,u, T) (3.10) 

are valid. It follows from this that 

Re h (ii (I +.B)": u 11~ + PR 11 T 112) = u A% II* _t R II CW II* - R Ra I(SJ, u) + (&, T, u) + (s2, u, T)1 (3.11) 

By virtue of the construction of operators S,,S2,B, 

I Re (SIT? u) I Q I (SIT, u) I B II T II II u II 

I Re (&u, T) I< I (S,u, T) I $ I/ T (I 1( u (1 
I Re VW7 4 I < 1 (BIT, 4 I d GJ,J,,-1 II T II II u u 

(3.12) 

Then from (3.12) and (3.11) follows that 

Re li (11 (I + B)’ 2 u II* + PR 11 T 11’) > 11 A’I~u 11’ -l- R 11 WT iI2 - R (2 -I- GJoJw-‘1 II T II U II 

Since operators A and c are positive definite and self-conjugate, hence 

II A’lz u I(* = (Au, u) > bnin (A) II 11 II*, II CW 11’ > h,, (0 U T II* 

From this and (3.13) we obtain the inequality 

(3.13) 

Re X (II U + BY’w II* i- PR II T II*) 2 X,i, (A) II u II2 + RX,i,, (Cl II T II* - R (2 + GJoJ,-‘) (+ EI II u II’ + &; II T II’) 

Setting El =%m,, (A)(2 +GJ,J,,-I)-IR-1 we obtain the following valid estimate for Reh: 

This and the conditions of the theorem constitute the proof. 
Thus, when condition (3.9) is satisfied and the fluid is heated from below, the oscillat- 

ing normal perturbations are dampened. In this case 

Imh=- R Im (B,T, u) (II (1 -I- B)’ 2 u II* + PR 11 T II z)-1 

The last formula shows that the oscillating perturbations are induced by operator B1 
associated with the transport force. When the body heated from underneath is stationary,there 
are no normal oscillating perturbations. 

If there is no temperature gradient, R = 0, then it follows from (3.1) that the entire 
spectrum consists of real positive numbers with a single limit point+ m. In that case all 
perturbations are monotonically damped, i.e.equilibrium of the system body plus fluid isstable. 

Theorem 4. Let the fluid be heated from above, i.e. the Rayleigh number R is negative. 
If it satisfies the inequality 

I R I < 4&n,, (A) Amin (C)J&-*J,-* (3.14) 

the entire spectrum of problem (3.1) lies in the region 

Re k> 0, I Im h I < (IN II Lm (Q) 

Proof. From (3.10) we have the equality 

- k (I/ (I + B)“*u \I” - PR I\ T II?) + 11 A’ : II I\’ - R 1) C”?T Iiz= R [(S,T, u) + (BIT. u) - (S2u, T)l 

It is obvious that 
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(S,. T. u) = (S.$l, T) 

From this and the preceding equality we have 

Reh= 
‘!d”‘ul~-RllC”Tlp-RIm(D,T. u, 

li (I + E)” ‘U ;: - PR !! T j/l (3.15) 

As in the proof of Theorem 3, we obtain 

11 A' *u I/ - R I/ CW (I2 - R Im (B,T,u) > I R 1 (km(c) - / R IG’J”*4-’ hzii, (A) J$) /l T Ii2 (3.16) 

Proof of the theorem follows from inequalities (3.14) and (3.16). 
When the body is stationary, operator B,=O, then (3.15) implies that HE)"‘1 0 and 

motion of the fluid is stable. This fact is known from the theory of free convection (see 
e.g. /l/j. 

The authors thank S. G. Krein and N. G. Kopachevskii for discussing this paper, and the 
reviewer for his remarks. 
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